湖北快3专家预测 湖北快3开奖结累 湖北快3遗漏数据 湖北快3基本走势一定牛 湖北快3走势图今天快3 湖北快3中奖怎么算 网上买湖北快3 湖北快3和值预测 福利湖北快3开奖结果 湖北快3合买 湖北快3推荐号 湖北快3开奖直播 湖北快3号码单号遗漏 湖北快3杀号软件 湖北快3中奖规则
邮箱登录 | 所务办公 | 收藏本站 | English | 中国科学院
 
首页 计算所概况 新闻动态 科研成果 研究队伍 国际交流 技术转移 研究生教育 学术出版物 党群园地 科学传播 信息公开
国际交流
学术活动
交流动态
学术报告
现在位置:首页 > 国际交流 > 学术活动
Interpretable Convolutional Neural Networks (CNNs) via Feedforward Design
2018-12-13 | 【 【打印】【关闭】

  主讲人:C.-C. Jay Kuo,University of Southern California

  时间:12月18日下午15:30~17:00

  地点:计算所一层报告厅

  报告摘要:

  Given a convolutional neural network (CNN) architecture, its network parameters are determined by backpropagation (BP) nowadays. The underlying mechanism remains to be a black-box after a large amount of theoretical investigation. In this talk, I describe a new interpretable and feedforward (FF) design with the LeNet-5 as an example. The FF-trained CNN is a data-centric approach that derives network parameters based on training data statistics layer by layer in one pass. To build the convolutional layers, we develop a new signal transform, called the Saab (Subspace approximation with adjusted bias) transform. The bias in filter weights is chosen to annihilate nonlinearity of the activation function. To build the fully-connected (FC) layers, we adopt a label-guided linear least squared regression (LSR) method. The classification performances of BP- and FF-trained CNNs on the MNIST and the CIFAR-10 datasets are compared. The computational complexity of the FF design is significantly lower than the BP design an, therefore, the FF-trained CNN is ideal for mobile/edge computing. We also comment on the relationship between BP and FF designs by examining the cross-entropy values at nodes of intermediate layers.

  报告人简介:

  Dr. C.-C. Jay Kuo received his Ph.D. degree from the Massachusetts Institute of Technology in 1987. He is now with the University of Southern California (USC) as Director of the Media Communications Laboratory and Distinguished Professor of Electrical Engineering and Computer Science. His research interests are in the areas of media processing, compression and understanding. Dr. Kuo was the Editor-in-Chief for the IEEE Trans. on Information Forensics and Security in 2012-2014. Dr. Kuo received the 1992 National Science Foundation Young Investigator (NYI) Award, the 1993 National Science Foundation Presidential Faculty Fellow (PFF) Award, the 2010 Electronic Imaging Scientist of the Year Award, the 2010-11 Fulbright-Nokia Distinguished Chair in Information and Communications Technologies, the 2011 Pan Wen-Yuan Outstanding Research Award, the 2014 USC Northrop Grumman Excellence in Teaching Award, the 2016 USC Associates Award for Excellence in Teaching, the 2016 IEEE Computer Society Taylor L. Booth Education Award, the 2016 IEEE Circuits and Systems Society John Choma Education Award, the 2016 IS&T Raymond C. Bowman Award, and the 2017 IEEE Leon K. Kirchmayer Graduate Teaching Award. Dr. Kuo is a Fellow of AAAS, IEEE and SPIE. He has guided 147 students to their Ph.D. degrees and supervised 29 postdoctoral research fellows. Dr. Kuo is a co-author of 275 journal papers, 920 conference papers and 14 books.

 
网站地图 | 联系我们 | 意见反馈 | 所长信箱
 
京ICP备05002829号 京公网安备1101080060号
湖北快3和值号码推荐号码
湖北快3专家预测 湖北快3开奖结累 湖北快3遗漏数据 湖北快3基本走势一定牛 湖北快3走势图今天快3 湖北快3中奖怎么算 网上买湖北快3 湖北快3和值预测 福利湖北快3开奖结果 湖北快3合买 湖北快3推荐号 湖北快3开奖直播 湖北快3号码单号遗漏 湖北快3杀号软件 湖北快3中奖规则
2015年瑞波币价格2015 11选5开奖快彩乐 mg电子游艺网址多少 逆战礼包 0304霍芬海姆 澳门三分彩哪些平台 新疆25选7号码 瑞波币骗局揭秘深圳 龙珠超布罗利日语在线